
A Linked Data reasoner in the Cloud

Jules Chevalier

LT2C, Télécom Saint-Etienne, Université Jean Monnet,
10 rue Tréfilerie, F-4200 France

jules.chevalier@univ-st-etienne.fr

http://portail.univ-st-etienne.fr

Abstract. Over the last decade, the paradigm of Linked Data has gained
momentum. It is possible to leverage implicit knowledge from these data
using a reasoner. Nevertheless, current methods for reasoning over linked
data are well suited for small to medium datasets, and they fail at reach-
ing the scale of the Web of Data. In this PhD thesis, we are interested in
how distributed computing in the Cloud can help a linked data reasoner
to scale. We present in this paper the early state of this thesis.

Keywords: Linked Data, Reasoning, Web of Data, Cloud Computing.

1 Research questions

As Weiser predicted, computers have weaved themselves into the fabric of every-
day life so that they are now indistinguishable from it. From personal computers
to cars and televisions, all of these objects are now powerful computers generat-
ing more and more information. In many applications, the Semantic Web helps
in changing this information into knowledge and linking it with other pieces of
knowledge on the Web. Apart from their explicit knowledge, linked data contain
implicit knowledge that can be leveraged using a reasoner. Reasoning is a com-
plex process, and current solutions aim at reasoning at the scale of the Web of
Data. That is why we need more powerful reasoners, scalable enough to make in-
ference over very large datasets. So far, distributing and parallelizing this process
over a cluster of computers seems the most adapted solution. Cloud Computing
appears like an interesting environment for parallel inferencing. Elasticity is a
primary characteristic of the Cloud, as it is composed of more or less hetero-
geneous clusters of commodity servers. Actually, Cloud providers APIs make it
possible to scale up and down the number of dedicated Virtual Machines (VMs)
that an application needs. A large-scale reasoner is an application presenting
a profile that fits Cloud Computing. It would have computation bursts when
new linked data arrive, depending on the amount of data and the number of
new derived triples. Once triples are derived, they could be materialized, and
then the reasoner no longer needs a large amount of VMs. The research question
is therefore to propose a Cloud-ready linked data reasoner, whose architecture
makes it possible to reason over a large scale corpus in a distributed way, and
where scalability increases (resp. decreases) dynamically as the reasoning pro-
cess is running (resp. no longer running). This research question also includes



2 A Linked Data reasoner in the Cloud

bandwidth optimization, which is part of the costs to run a service in the Cloud.
In the following, we present previous work about distributed and parallelized
reasoning and confront them to Cloud-hosted environments.

2 State of the Art

Until now, three works held our attention. These works are representatives of
current solutions for distributed inferencing.

2.1 WebPie

In WebPie[8], the distribution is done thanks to the MapReduce paradigm[1],
under the Hadoop framework. MapReduce is a very efficient paradigm for batch
processing. In Webpie, each inference rule is a job. Jobs are executed one after
each other, but this execution is distributed over a cluster. WebPie works with
two logic fragments: RDFS1 and OWL Horst[3]. The results show that quickly,
over four cores, the gain of a new core is massively decreasing, against a loga-
rithmic curve. [7] fixes some issues that optimises the reasoner implementation,
improving its performance and completeness. But despite these upgrades, the
results still suffer from the same issue. [4] critics this points in details. In short,
while MapReduce is a handful paradigm which allows to set a distributed system
implementing only two functions and that was popularized by its Hadoop-related
eco-system, it is however not very adapted for reasoning. Actually, splitting the
data in hermetic cores generates duplicates and therefore introduces unnecessary
loops between jobs. This implies a higher bandwidth payload to exchange more
batches of triples than necessary. Convergence is longer to reach, in a non linear
way, as the number of triples increases. Although no theoretical evidence are
provided, in practice a threshold close to four VMs limits the scalability.

2.2 MapResolve

[5] highlights the main drawback of the MapReduce paradigm : each worker must
wait every other’s end. This obviously slows down the computation speed, and
decreases the project performance. Inspired by WebPie and other MapReduce
works, they propose a reasoning solution over more expressive logic fragments.
Despite their extensions, this follow-up proposal fails to provide significant im-
provements over WebPie in terms of performance.

2.3 Parallel Inferencing for OWL Knowledge Bases

For partitioning inference, we have two solutions: split the rules (that is what
WebPie and MapResolve do), or split data. [6] proposes three methods to split
data: graph partitioning, hash partitioning, or domain-specific partitioning, and

1 A final recommendation from the W3C, http://www.w3.org/TR/rdf-schema/



Knowledge in the Cloud 3

a last technique to split rules depending on the rule-dependency graph. The
authors also propose a parallelized reasoning algorithm based on existing rea-
soners. Unlike MapReduce-based solutions, data are not randomly splitted, with
the aim to avoid duplicates and core communications. Unfortunately, these opti-
misations are not sufficient. Data are partitioned into hermetic cores, which still
generates loops and duplicates.

2.4 Analysis

Among the three approaches we studied, approaches to build concurrent reason-
ers are divided into two categories :

Distributed : Both WebPie and MapResolve are based on MapReduce, which
is a framework for distributed computing. Data partitioning in [6] is a dis-
tributed approach.

Parallel : In the case of rule-partitioning, [6] proposes a parallel approach.

In distributed computing each computing unit has its own private memory
whereas in parallel computing all computing units access a shared memory. Due
to the very own nature of the reasoning process, where rules can be interde-
pendant, i.e. a directed graph, data cannot be splitted to be processed indepen-
dently, which is a requirement of the MapReduce paradigm. To circumvent this
issue, authors of the three approaches try to split data in order to minimize the
overhead that will be implied by reprocessing data after a graph update (which
occurs at each inference). This introduces loops and an overhead of bandwidth
consumption that prevent scalability with more than half a dozen nodes. Surely
the momentum gained by MapReduce for a few years, and the ease of imple-
mentation have oriented the authors towards this approach. The state of the
art solutions do allow to handle more linked data than a single node could have
done before. However, we believe that parallel processing could be an interesting
paradigm to foster large scale linked data reasoning.

3 Proposed approach

After studying existing solutions, we have initiated some features of our own
solution for the case of a Cloud-hosted linked data reasoner.

1. Shared memory for a full parallel solution
2. Sort axioms by relevance instead of existing fragments
3. Stream compliant reasoner

3.1 Parallel Processing : Shared Memory

The main difficulty to design a parallel reasoner over the cloud is to efficiently
implement a shared memory among numerous VMs. This problem, of the utmost
practical interest, has been tackled by several approaches, especially for the Java
language. Solutions such as Jelastic, Terracotta, HazelCast, Coherence present
features that could be suitable to implement a concurrent reasoner.



4 A Linked Data reasoner in the Cloud

3.2 Axioms sorted by relevance for the Web of Data

All axioms of description logic are not used with the same frequency. Figure 1
presents a rank of logic axioms as actually used in practise on the Web of Data.
Using this histogram, instead of reasoning over defined fragments of description
logic, we first reason over the most used axioms, to fit the use made by the Web
of Data. This method favours the most-used concepts instead of grouping them
by fragments.

Fig. 1: Logic description axioms PageRank(histogram derived from [2])

A parameter n determines how many fragments are taken into account. We
would be able to optimize n with respect to the time of reasoning that is accept-
able for the application that requires the reasoning.

3.3 Stream-based architecture

Our last targeted feature is the ability to fire new triples to other nodes as soon
as they are created by a rule. This prevents the use of the MapReduce paradigm
to split the load. Instead of waiting the entire process of a MapReduce batch
of data, each newly created axiom would be sent to all nodes that is expected
to leverage new knowledge from this triple. This configuration tends to be as
close as possible to pseudo real time reasoning. It could also be more compatible
with incremental reasoning strategies of stream-oriented applications to be in
semantic sensors networks. It implies to be able to connect the node in the
architecture with respect to the dependency graph if rules in the considered
linked data logic fragment. This depends on n.

4 Planned research methodology and Schedule

Deploy WebPie and reproduce results. The first point will be to deploy a
WebPie version in our private Cloud. Thanks to this, we will be able to repro-
duce [8] experiments on different datasets, from the smallest to the biggest. This



Knowledge in the Cloud 5

will let us have a baseline to compare our own experimentation results.
Propose and implement our stream reasoner. The second step will be the
proposal of our reasoner. It is for now an archetype which needs to be completed.
We must precise its core strategies (rule and data partition especially) and to
implement it.
Compete against WebPie results. When a first implementation will be fin-
ished, we would deploy it on our private Cloud, and run tests with the same
datasets as for WebPie.

– May 2013 - State of the art internal report.
– October 2013 - WebPie deployment and tests
– February 2014 - Proposal of our Cloud-hosted linked data reasoner.
– May 2014 - First implementation of our reasoner.
– November 2014 - ’Stable’ version deployed on our private Cloud.
– January 2015 - Evaluation campaign and interpretation of results.
– April 2015 - Writing the PhD thesis.

Acknowledgement

Frédérique Laforest, Christophe Gravier and Julien Subercaze, in charge of this
thesis.

OpenCloudware, funded by the French Fonds national pour la Société Numérique
(FSN), and is supported by Pôles Minalogic, Systematic and SCS.

References

1. Jeffrey Dean. MapReduce: Simplified data processing on large clusters. Communi-
cations of the ACM, pages 1–13, 2008.

2. Birte Glimm, Aidan Hogan, Markus Krötzsch, and Axel Polleres. OWL: Yet to
arrive on the Web of Data? CoRR, abs/1202.0, 2012.

3. HJ Ter Horst. Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. Web Semantics:
Science, Services and Agents on the, 3(2-3):79–115, October 2005.

4. Peter Patel-Schneider. Comments on webpie. Web Semantics: Science, Services and
Agents on the World Wide Web, 15(3), 2012.

5. Anne Schlicht. Mapresolve. Web Reasoning and Rule Systems, pages 1–6, 2011.
6. Ramakrishna Soma and V.K. Prasanna. Parallel Inferencing for OWL Knowledge

Bases. 2008 37th International Conference on Parallel Processing, pages 75–82,
September 2008.

7. Jacopo Urbani, Spyros Kotoulas, and Jason Maassen. WebPIE: A Web-scale parallel
inference engine using MapReduce. Web Semantics: Science, pages 59–75, 2012.

8. Jacopo Urbani and Eyal Oren. RDFS/OWL reasoning using the MapReduce frame-
work. Science, pages 1–87, 2009.


