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Abstract Schema information about resources in the Linked Open Data (LOD)
cloud can be provided in a twofold way: it can be explicitly defined by attaching
RDF types to the resources. Or it is provided implicitly via the definition of the
resources’ properties. In this paper, we present a method and metrics to analyse
the information theoretic properties and the correlation between the two manifes-
tations of schema information. Furthermore, we actually perform such an analysis
on large-scale linked data sets. To this end, we have extracted schema informa-
tion regarding the types and properties defined in the data set segments provided
for the Billion Triples Challenge 2012. We have conducted an in depth analysis
and have computed various entropy measures as well as the mutual information
encoded in the two types of schema information. Our analysis provides insights
into the information encoded in the different schema characteristics. Two major
findings are that implicit schema information is far more discriminative and that
applications involving schema information based on either types or properties
alone will only capture between 63.5% and 88.1% of the schema information
contained in the data. Based on these observations, we derive conclusions about
the design of future schemas for LOD as well as potential application scenarios.

1 Introduction

Schema information of semantic data on the Linked Open Data (LOD) cloud is given
in a twofold way: explicitly by providing the type of a resource and implicitly via the
definition of its properties. These two manifestations of schema information are to a
certain extent redundant, i.e., certain resource types entail typical properties and cer-
tain properties occur mainly in the context of particular types. For instance, we would
expect a resource of type foaf:Person to have the properties foaf:name or foaf:age.
Likewise, we can assume a resource with the property skos:prefLabel to be of type
skos:Concept.

Schema information over LOD is used for various purposes such as indexing dis-
tributed data sources [10], searching in large graph databases [13], optimizing the ex-
ecution of queries [14] or recommending appropriate vocabularies to linked data en-
gineers [16]. Thus, it is an important question to which degree explicit and implicit
schema information is correlated, i.e., to which extend the use of RDF types and prop-
erties appear together to describe resources. A high correlation of explicit and implicit



schema information corresponds to redundant information—a fact which can be ex-
ploited, for instance, when indexing the LOD cloud and providing a central lookup
table for LOD sources. One application in this context is the opportunity to com-
press a schema based index for LOD as motivated and requested by Neumann and
Weikum [15]. More even, it is of interest, which schema information actually needs
to be extracted from the Linked Open Data cloud and which information might be in-
ferred1. Finally, a high correlation can be exploited directly for recommending typical
combinations of types or properties when modelling Linked Data [16]. This leads us to
the overall question to which extent the explicit schema information provided by RDF
types coincides with the implicit schema information of the properties used in the LOD
cloud and how consistent are the observed patterns and redundancies.

A fundamental prerequisite to answer this question is the availability of a reliable
schema extracted from the LOD cloud that takes into account both explicit and im-
plicit schema information. With the SchemEX approach [10,9], we can compute such
a schema for huge amounts of RDF triples in an efficient manner. In the context of this
paper, we describe a method and metrics for leveraging a schema obtained in this way to
investigate the information theoretic properties and global dependencies between RDF
types and properties. As the discussion of the related work in the subsequent section
shows, such methods are—to the best of our knowledge—not available and an investi-
gation as presented in this paper has not been done before. We will close this gap and
consider for our analysis different data sets crawled from the LOD cloud and contained
in the Billion Triples Challenge 2012 data set. The data sets cover data of different
origin and quality and serve as basis for our experiments.

In Section 3, we will introduce a probabilistic schema distribution model. Based on
this model, we identify different information theoretic metrics that are of interest. The
metrics comprise different types of entropy as well as mutual information. In Section 4,
we describe a method of how to estimate the relevant probabilities from a schema-based
index and introduce the data sets we use for our analysis of linked data. The results of
our investigation are shown in Section 5 where we also draw some conclusions regard-
ing the design and application of future LOD schema. In summary, we have observed
that the redundancy of explicit and implicit schema information on different parts of
the LOD varied from 63.5% to 88.1%. Thus, a general schema for LOD should not be
build on either explicit or implicit schema information only and should ideally integrate
both types of information. Nevertheless, we also observed several highly indicative sets
of properties, allowing a prediction of the types of resources.

2 Related Work

One application where schema information can be of value is query optimization. Neu-
mann and Moerkotte [14] employ so-called characteristic sets, which basically classify
RDF resources by the correlation of their (outgoing) predicate links. Knowledge about
these sets allows for quite precise estimates of the result cardinality of join operations.
Further insights into the correlation between properties in an RDF graph were not nec-

1 Inference here can be realized in both ways: semantically or statistically.



essary. Neither were explicit schema information provided in form of RDF types con-
sidered. A similar approach is presented by Maduko et al. [13]. Here the focus was
on efficient approaches to estimate subgraph frequencies in a graph database. This
subgraph frequency information is then used for conducting efficient queries on the
graph database. In their work, Maduko et al. use both implicit schema information and
explicit schema information. However, they do not determine the cardinality of inter-
mediate join results of the two schema information sources for executing the queries.
Harth et al. [6] propose an approximative approach to optimize queries over multiple
distributed LOD sources. They build a QTree index structure over the sources, which is
used to determine the contribution of the single sources to the query results.

Several tools aim at providing statistics for the LOD cloud. LODStats [2] is a tool
and framework for computing 32 different statistics on Linked Open Data such as those
covered by the Vocabulary of Interlinked Data sets (VoID) [1]. The tool provides de-
scriptive statistics such as the frequencies of property usage and datatype usages, the av-
erage length of literals, or counting the number of namespaces appearing at the subject
URI position [2]. LODStats operates on single triple patterns, i.e., it does not provide
statistics of, e.g., star patterns or other (arbitrary) graph patterns. However, it covers
more complex schema-level characteristics like the RDFS subclass hierarchy depth [2].
Overall, analysis of the correlating use of different properties, RDF types, or the com-
mon appearance of properties and types like we investigate is out of scope. Also make-
void2 computes VoID-statistics for a given RDF file. These statistics usually contain in-
formation about the total number of triples, classes, properties, instances for each class,
the uses of each property and the number of triples that link a subject on one domain to
an object on another domain. Another framework for statistic generation on RDF data is
RDFStats3. In contrast to make-void, RDFStats can also operate on SPARQL endpoints
and uses a different vocabulary for its statistics.

Hogan et al. have conducted an empirical study to investigate the conformance of
linked data sources with 14 different linked data principles [8]. As metric, the authors
apply the number of unique namespaces used by the respective data providers and pro-
vide a ranked list in terms of top-5 and bottom-5 data providers. Among others, the au-
thors analysed how different classes and properties of vocabularies defined at one data
source are re-used and mixed by other linked data providers. In contrast, the analysis of
the correlation of class terms and property terms of different (or the same) vocabularies
done here is agnostic to the actual source the linked data originates from. Bizer et al.
have recently analysed the joined occurrence of a single class with a single property
on the structured data extracted from a large web crawl4. Lorey et al. [11] developed a
frequent item set approach over properties for the purpose of detecting appropriate and
diverging use of ontologies. None of these works addresses information theory metrics
as it is done in the paper at hand. The application of information theoretic measures on
RDF data is addressed in [12]. However, the analysis there is focussing on a different
level of schema re-use of concepts and does not consider any property information.

2 https://github.com/cygri/make-void (accessed 9 March 2013)
3 http://rdfstats.sourceforge.net/ (accessed 9 March 2013)
4 http://webdatacommons.org/ (accessed 9 March 2013)

https://github.com/cygri/make-void
http://rdfstats.sourceforge.net/
http://webdatacommons.org/


3 Probabilistic Schema Model and Metrics

Schema information on the LOD cloud can be provided explicitly by the use of RDF
type properties. There are no (practical) boundaries to the number of types that can
be attached to a resource. In practice, we can observe resources which have no type
as well as resources with several hundred types. In addition, schema information can
be provided implicitly by the properties used to describe a resource. These properties
connect one resource to another resource or a literal value. In this way, they implicitly
describe the type of a resource by its relations. Again, it is possible to observe resources
which have no relation (beyond a type description) as well as resources with hundreds
of properties.

The goal of the analysis in this paper is to measure and quantify the information
theoretic properties of the explicit schema information given by RDF types and the im-
plicit schema information provided by the used properties. To this end, in Section 3.1
we first introduce a probabilistic model for the occurrence of types and properties of
resources. This allows us to measure the schema information contained in types, prop-
erties or both together. In order to do so, we present different metrics such as entropy
of marginal distributions, conditional entropy and mutual information in Section 3.2.

3.1 A Probabilistic Distribution Model for Types and Properties

We are interested in two observations about the resources on the LOD cloud: their types
and their properties. To be more specific, we are interested in combinations of types
and combinations of properties. A particular combination of types is a set of types at-
tached to a resource. The space of all possible combinations therefore is the power set
P(Classes) of all class types in the data. While the power set itself is a huge set, we can
actually restrict ourself to the subset TS ⊂ P(Classes) of actually observed combina-
tions of RDF types in the LOD cloud. For a given resource, we can now observe t ∈ TS
which corresponds to a set of types (e.g., the set {foaf:Person,dbpedia:Politician}).

Likewise, the properties observed for a resource is a combination of all pos-
sible properties. Accordingly here we deal with an element from the power set
P(Properties) of all observed properties. Again, we only need to consider the
subset PS of actually occurred property sets. For an individual resource, we ob-
serve r ∈ PS which corresponds to the set of its properties5 (e.g., the set
{foaf:familyName, foaf:givenName,dbpedia:spouse}).

To model the joint distribution of type sets and property sets, we introduce two
random variables T and R. These take as values the elements in TS and PS, respec-
tively. Both random variables are of discrete nature and their joint distribution can be
characterized by:

P (T = t, R = r) = p(t, r) (1)

where p(t, r) is the probability for a randomly chosen resource to observe the con-
crete set t of attached types and the set r of properties. Based on this joint distribution,
we can also identify the marginal distributions of T and R:

5 Please note, we use the letter r for sets of properties (inspired by the term relation), as p will
be used to denote probabilities.



P (T = t) =
∑
r∈PS

p(t, r) , P (R = r) =
∑
t∈TS

p(t, r) (2)

3.2 Metrics of Interest

For analysing the LOD cloud, we are interested in several characteristics of the joint
distribution P (T,R) introduced above. The main questions that we want to answer are:

(a) How much information is encoded in the type set or property set of a resource on a
global scale?

(b) How much information is still contained in the properties, once we know the types
of a resource?

(c) How much information is still contained in the types, once we know the properties
of a resource?

(d) To which degree can one information (either properties or types) explain the re-
spective other?

To answer these questions, we introduce appropriate metrics that can be applied
to the joint distribution of type sets and property sets. All our metrics are based on the
entropy of probabilistic distributions [17], the standard concept to measure information.

Entropy of the Marginal Distributions. To answer the question of (a) how much
information is encoded in the type or property set of a resource, we need to look at the
marginal distributions. These provide us with the probability of a certain resource to
show a particular set of types or properties. The entropy of the marginal distributions of
T and R is defined as:

H(T ) = −
∑
t∈TS

P (T = t) · log2 (P (T = t)) (3)

H(R) = −
∑
r∈PS

P (R = r) · log2 (P (R = r)) (4)

The values H(T ) and H(R) give us an idea of how much information is encoded
in the sets of types or properties of the resources. A higher value corresponds to more
information, which in turn means that the sets of types or sets of properties appear more
equally distributed. To be more concrete: an entropy value of 0 indicates that there is
no information contained. For instance, a value of H(T ) = 0 would indicate that all
resources have exactly the same set of types (likewise for H(R) = 0). A maximal
value, instead, is reached when the distribution is an equal distribution, i.e., each set of
types or properties is equally probable. This fact also allows for normalizing the entropy
values by:

H0(T ) =
H(T )

HT
max

=
H(T )

log2(|T |)
, H0(R) =

H(R)

HR
max

=
H(R)

log2(|R|)
(5)



The normalized entropy value ranges between 0 and 1 and indicates whether the
distribution is closer to a degenerated or a uniform distribution.

Conditional Entropy. The question (b), how much information is still contained in
the properties, once we know the types of a resource implies a conditional probability
and, thus, a conditional entropy. We have to take a look at the distribution of the property
sets given that we already know the types of a resource. The entropy in this case (i.e., the
conditional entropy) conveys how much information is still in the additional observation
of the properties. Again, if the set of types perfectly defines the set of properties to
expect, there would be no more information to be gained. Thus, the conditional entropy
would be zero. If, instead, the types were virtually independent from the properties, we
would expect to observe the marginal distribution of the properties and its according
entropy. Formally the conditional entropy for a given type set t is defined as:

H(R|T = t) = −
∑
r∈PS

P (R = r|T = t) log2 (P (R = r|T = t)) (6)

= −
∑
r∈PS

p(t, r)

P (T = t)
log2

(
p(t, r)

P (T = t)

)
(7)

Equivalently, to answer question (c), the conditional entropy for a given property
set r is:

H(T |R = r) = −
∑
t∈TS

p(t, r)

P (R = r)
log2

(
p(t, r)

P (R = r)

)
(8)

These conditional entropies are fixed to one particular set of types t or set of prop-
erties r. As we are interested in a global insight of a large scale data set like the LOD
cloud, it is not feasible to look at all the individual observations. Rather we need an
aggregated value.

One value of particular interest is a conditional entropy of 0. For instance, in the
case of H(R|T = t) = 0 knowing the set of types t is already conveying all the
information, i.e. the set of properties can be derived with probability 1. Equivalently in
the case of H(T |R = r) = 0 we can derive the set of types from the set of properties.
Accordingly we are interested in the probability of such a conditional entropy of 0, e.g.
P (H(R|T = t) = 0) for the case of given type sets. Treating the conditional entropy
itself as a random variable allows for easily estimating this probability by P (H(R|T =
t) = 0) =

∑
H(R|T=t)=0 P (T = t).

Expected Conditional Entropy. A similar approach is taken for the expected con-
ditional entropy H(R|T ). This aggregated value also considers the conditional entropy
as a random variable and computes the expected values of this variable based on the
probability to actually observe a certain set of types t. The definition of this aggregation
is:



H(R|T ) =
∑
t∈TS

P (T = t)H(R|T = t) (9)

= −
∑
t∈TS

∑
r∈PS

p(t, r) log2

(
p(t, r)

P (T = t)

)
(10)

and equivalently H(T |R) is for a given set of properties r:

H(T |R) = −
∑
r∈PS

∑
t∈TS

p(t, r) log2

(
p(t, r)

P (R = r)

)
(11)

Joint Entropy. Finally, we will also take a look at the joint entropy of T and R,
which is defined as:

H(T,R) = −
∑
t∈TS

∑
r∈PS

p(t, r) log2 (p(t, r)) (12)

Mutual Information. To finally answer the question of (d) how far one of the
schema information (either properties or types) can explain the respective other, we
employ mutual information (MI) [3]. MI is a metric to capture the joint information
conveyed by two random variables – and thereby their redundancy. The MI of explicit
and implicit schema information of the LOD cloud is defined as:

I(T,R) =
∑
r∈PS

∑
t∈TS

p(t, r) log2
p(t, r)

P (T = t) · P (R = r)

(13)

The log expression in this sum, i.e., the expression log2
p(t,r)

P (T=t)·P (R=r) is also
known as pointwise mutual information (PMI). PMI can be explained as the strength
of the correlation of two events, in our case how strongly a particular type set and a
particular property set are associated with each other.

One characteristics of MI is the open range of its values. A normalization of MI to
the interval [−1, 1] is given in [18] and involves the entropy of the marginal distributions
of T and R. It is used as a direct measure for redundancy and is defined as:

I0(T,R) =
I(T,R)

min (H(T ), H(R))
(14)

4 Empirical Analysis of Linked Open Data

In the previous section, we have elaborated the metrics to obtain the relevant insights
into the information and redundancy encoded in a LOD schema. In this section, we pro-
vide an approach to estimate the required probabilities from a SchemEX index structure,
apply this approach to real world data and compute the metrics for our analyses.
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Figure 1. SchemEX index structure with three layers leveraging RDF typings and prop-
erty sets

4.1 The SchemEX Index as Basis for the Analysis

The purpose of SchemEX [9,10,5] is to link schema information to data sources which
provide resources conforming to this schema element. Data sources are, e.g., static
RDF documents and SPARQL endpoints [7]. The central schema elements of SchemEX
are Typeclusters (TC) and Equivalence classes (EQC). A TC contains all data sources
which provide resources conforming to a well defined set of types/classes. The EQC
divide the data sources in each TC into disjoint subsets, defined by the set of properties
the instances have and in which TC the object of the triple lies. An overview of the
information contained in a SchemEX index is shown in Figure 1.

It is important to note that data sources can occur in several TC or EQC as they typi-
cally describe more than one and—in particular—different kinds of resources. However,
different occurrences of a data source conform to different (in particular disjoint) sets
of resources. Different data volume can be reflected by annotating the data sources at-
tached to schema elements with the number of resources which exhibited the according
schema information [5].

Noteworthy about SchemEX is, that it can be computed very efficiently and for
large data sets using a stream-based approach. In this case, the analytical component
is operating in a single pass fashion over a set of RDF triples. By using a windowing
technique, it is possible to obtain a very accurate schema of the processed data us-
ing commodity hardware. However, the windowing technique entails a certain loss of
schema information. The extent of this loss has been analysed in detail in [4]. The type
of schema information and the metrics we use in the context of this paper are relatively
stable. Deviations typically range up to 5%, in single cases differences of up to 10%
have been observed in an empirical evaluation.



4.2 Estimating Probabilities from a SchemEX Index

The TC elements in SchemEX [9] described in Section 4.1 correspond directly to the
notion of types sets in TS given in Section 3.1. The equivalence classes in SchemEX
subdivide the typeclusters and are defined by the set of properties the triples have as
well as the typecluster the object of triple lies in. Hence, they are more finegrained than
the property sets we are interested in. However, aggregating the equivalence classes
defined by the same set of properties over all attached typeclusters, we obtain exactly
the property sets PS introduced in Section 3.1. In this way we can easily construct the
set PS from a SchemEX index.

As stated above, each entry in the SchemEX index refers to a distinct set of re-
sources. Even if some of the resources are actually located in the same data source.
This is provided by the pairwise disjoint character of equivalence classes. In conclu-
sion, we can treat each entry in the index as a different set of resources, even if it is
actually reflected by the same URL denoting a common data source.

If we denote with DS(t, r) the set of data source entries in the SchemEX index that
correspond to the resources with types t and properties r, we can estimate the above
probability of observing a resource to have a particular type and property set by:

p̂(t, r) =

∑
d∈DS(t,r) |d|

N

Where N is the number of all resources used to build the SchemEX and |d| is the
number of resources in data source d with the type set t and the property set r.

The estimates for the probabilities p(t, r) above are central to all relevant metrics
and effectively need only to be aggregated and normalized accordingly. However, the
number of observed type sets and property sets indicates the high number of possible
combinations (i.e., |TS|× |PS|). The pragmatic solution to this quadratic development
of combinations is not to compute all of the probabilities, but only those which actually
have a non zero value. This does not affect the results of the computed metrics, as zero
probabilities do not affect their overall values.

4.3 Data Sets

For our empirical analysis, we use the different segments of the data set provided for
the Billion Triple Challenge (BTC) 2012. The BTC data set has been crawled from the
web in a typical web spider fashion and contains about 1.44 billion triples. It is divided
into five segments according to the set of URLs used as seed for the crawling process:
Datahub, DBPedia, Freebase, Rest and Timbl. Details about the different parts and the
crawling strategies used for collecting the data are described on the BTC 2012 data set’s
website6. As the efficient stream-based computation of a schema entails a certain loss of
accuracy regarding the schema, we have to check that these inaccuracies do not affect
the overall results. To this end, we use smaller data sets to compute the schema once
with our stream-based approach and once in lossless approach and compare the metrics

6 BTC 2012 data set: http://km.aifb.kit.edu/projects/btc-2012/ (accessed
9 March 2013)

http://km.aifb.kit.edu/projects/btc-2012/


on these two schemas. As the computation of a gold standard schema has high require-
ments regarding the hardware resources, we were limited to derive lossless schema for
data sets of up to 20 million triples. As small data sets, we used (A) the full Rest subset
(22,328,242 triples), (B) an extract of the Datahub subset (20,505,209 triples) and (C)
an extract of the Timbl subset (9,897,795 triples)7.

The stream-based approach is also applicable to the full data crawls of (D) Datahub,
(E) DBPedia, (F) Freebase and (G) Timbl. We used the same settings as in [9], using a
window size of 50,000 instances for schema extraction. While the small data sets serve
the purpose of confirming the stability of the stream-based approach, the larger data
sets are used for the actual analysis of explicit and implicit schema information on the
LOD cloud. We consider the data sets particularly useful as they span different aspects
of the LOD cloud. With Datahub, we have got a sample of several publicly available
linked RDF data sources registered in a central location. DBpedia is interesting as it is
one of the central and most connected resources in the LOD cloud extracted from the
collaboratively curated Wikipedia. Freebase, instead, is also a collaborative knowledge
base, but here the users directly operate on the structural data. The Timbl data set is
a crawl starting at the FOAF profile of Tim Berners-Lee (thus, the name). Hence, it
provides a snapshot from yet a different part of the LOD cloud, namely starting at
small, manually maintained RDF files.

5 Results of our Analysis

Table 1 gives an overview of the count statistics and metric values obtained for the
smaller data sets (A), (B) and (C). The table compares the values of the lossless gold
standard schema computation with the efficient stream based approach. The observed
deviations in the number of type sets in the data sets (A), (B) and (C) are very low and
confirm the accuracy observed in previous experiments [4]. While for the data sets (B)
and (C) also the number of property sets obtained by the stream-based approach does
not differ much from the gold standard, we observed a slightly stronger deviation on the
Rest (A) data set. The sheer count of type and property sets, however, does not reflect
the number of data sources and resources behind the individual elements in the schema.
Thus, it is necessary to consider the distributions and the metrics derived from those.
Here, we observe a generally quite good behaviour of the efficient schema approxima-
tion using the stream-based approach. The differences in the metrics are relatively small
and consistent within each data set. In conclusion, we decided that the loss of accuracy
due to the efficient stream-based schema computation is counterbalanced by the capa-
bilities to analyse data sets which are an order of magnitude larger: the observation of
more data allows for a more sound evaluation of schema information on the LOD cloud.

Table 2 gives an overview of the computed metrics on the large data sets. Already
the differences in the number of observed type and property sets underline the hetero-
geneity of the data sets. We will now go into the details of the single metrics.

7 The extracts correspond to the data sets that would have been obtained by stopping the crawling
process after 2 hops from the Datahub URI seed set and 4 hops from the Timbl URI seed set.
We did not produce extracts for DBpedia and Freebase as the hop information is not provided
for these BTC subsets.
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Entropy in Type and Property Sets. We can observe the tendency that the prop-
erty sets convey more information than type sets. This can be observed in the higher
values of the normalized entropies. For instance, the normalized marginal entropy of
the property sets has a value of 0.324 on the DBpedia (E) data set, while the normal-
ized marginal entropy of the type sets is 0.093. This observation provides a hint that
on DBpedia the distribution into type sets is far more skewed than the distribution of
property sets. Similar observations can be made for the data set (A), (F) and (G), though
to a lower extent. An exception is the Datahub data set (D), where the distribution of
resources in type sets and property sets seems comparable.

Conditional Entropies. Looking at the expected conditional entropies reveals some
interesting insights. Recall that the aggregation we chose for the conditional entropy
provides us with the expected entropy, given a certain type set or property set. We can
see in Table 2 that the entropy given a property set tends to be far lower than the one
when given a type set. In conclusion: knowing the properties of a resource in these cases
already tells us a lot about the resource, as the entropy of the conditional distribution
can be expected to be quite low. On the contrary, when knowing the type of a resource
the entropy of the distribution of the property sets can be expected to be still relatively
high (when compared to the entropy of the marginal distribution). We looked at the
data more closely to investigate how often a given type set is already a clear indicator
for the set of properties (and vice versa). This insight is provided by considering the
probabilities P (H(R|T = t) = 0) and P (H(T |R = r) = 0) to observe a conditional
entropy of 0. The most extreme case is the Freebase (F) data set, where for 80.89%
of all resources it is sufficient to know the set of properties in order to conclude the
set of types associated with this resource. Knowing, instead, the types of a resource
conveys less information: only in 2.05% of the cases this is sufficient to predict the set
of properties of a resource. Again, and with the exception of Datahub (D), the other data
sets exhibit a similar trend. However, at very different levels: the probability of knowing
the type set for a given property set ranges between 15.15% and 54.85%. The Datahub
data set shows a far more balanced behaviour. Both probabilities P (H(R|T = t) = 0)
and P (H(T |R = r) = 0) are at around 11%, confirming the particular form of this
data set.

Mutual Information. Finally, the value of the normalized MI gives us insights on
how much one information (either properties or types) explains the respective other.
Also here, we observe a quite wide range from 0.635 on DBpedia (E) to 0.881 on
Rest (A). Accordingly, extracting only type or only property information from LOD
can already explain a quite large share of the contained information. However, given
our observations a significant part of the schema information is encoded also in the
respective other part. The degree of this additional information depends on the part of
the LOD cloud considered. As a rule of thumb, we hypothesise that collaborative ap-
proaches without a guideline for a schema (such as DBpedia) tend to be less redundant
than data with a narrow domain (Timbl) or some weak schema structure (Freebase).

Discussion of the Results. The observations on the large data sets provide us with
insights into the form and structure of schema information on the LOD cloud. First of
all, the distribution of type sets and property sets tend to have a relatively high normal-
ized entropy. We can conclude that the structure of the data is not dominated by a few



combinations of types or properties. Accordingly for the extraction of schema informa-
tion, we cannot reduce the schema to a small and fixed structure but need to consider
the wide variety of type and property information. Otherwise the schema would loose
too much information.

A second observation is the dependency between types and properties. The condi-
tional entropy reveals that the properties of a resource usually tell much more about
its type than the other way around. This observation is interesting for various appli-
cations. For instance, suggesting a data engineer the types of a resource based on the
already modelled properties seems quite promising. We assume that this observation
can also be seen as an evidence that property information on the LOD cloud actually
considers implicit or explicit agreements about the domain and range of the according
property. However, this observation is not valid for the entire LOD cloud. Depending
on the concrete setting and use case, a specific analysis might need to be run.

Finally, the observed MI values underline the variance of schema information in
the LOD cloud. Ranges from 63.5% to 88.1% redundancy between the type sets and
property sets have been observed. Thus, approaches building a schema only over one of
these two types of schema information run at the risk of a significant loss of information.

6 Conclusions and Future Work

In this paper, we have proposed a method and metrics for conducting in depth analy-
sis of schema information on Linked Open Data. In particular, we have addressed the
question of dependencies between the types of resources and their properties. Based on
the five segments of the BTC 2012 data set, we have computed various entropy metrics
as well as mutual information. In conclusion, we observe a trend of a reasonably high
redundancy between the types and properties attached to resources. As more detailed
conclusion, we can derive that the properties of a resource are rather indicative for the
type of the resource. In the other direction, the indication is less strong. However, this
observation is nor valid for all sources on the LOD cloud. In conclusion, if the applica-
tion and data domain is not known, it is necessary to capture both: explicit and implicit
schema information.

As future work, we plan to deepen these insights and incorporate the obtained
deeper understanding into various applications. Therefore, we will look into the de-
tails of the conditional distributions for given type sets and property sets. In this way,
we might identify which sets of types and properties allow for highly precise predic-
tions of the respective other schema information. On the application side, we plan to
use the gained insights for various purposes: index compression for SchemEX as well
as the detection of schema patterns that are stable enough—and thereby suitable—for
constructing an API for accessing LOD resources.
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