
Hafslund Sesam – an archive on semantics

Lars Marius Garshol and Axel Borge

Bouvet ASA, Oslo, Norway,
larsga@bouvet.no, axel.borge@bouvet.no, http://www.bouvet.no

Abstract. Sesam is an archive system developed for Hafslund, a Nor-
wegian energy company. It achieves the often-sought but rarely-achieved
goal of automatically enriching metadata by using semantic technologies
to extract and integrate business data from business applications. The
extracted data is also indexed with a search engine together with the
archived documents, allowing true enterprise search.

1 Introduction

Every enterprise has a number of different IT systems, each of which maintains
an incomplete picture of the enterprise. The full picture is nowhere to be found,
because information is not connected across the different systems. Solving this
is non-trivial, as traditional systems can only store data which fits their schema,
and a single system for the entire enterprise is unrealistic.

We have developed a system called Sesam for Norwegian energy company
Hafslund, which collects information from different IT systems and integrates
it into a meaningful whole. This allows users to search and browse data across
system borders. The system avoids the schema problem by using RDF to store
the integrated data.

Sesam is actually Hafslund’s internal document archive, but an archive built
in an unusual way. Documents are tagged with URIs from the triple store, and
these URIs connect the document metadata with enterprise data extracted from
backend systems. Having the enterprise data available also allows metadata to
be automatically enriched by traversing the data in the triple store.

The system thus improves metadata quality while at the same time reducing
the need for manual metadata input by users. In addition, it is used by customer
service representatives to find information relevant to callers.

An overview of the system architecture is shown in figure 1 on the following
page.

1.1 User Interface

The user interface to the system is an application built on a search engine, which
has indexed both documents and the structured RDF data. The application
presents a faceted search interface with entity pages (pages that show all data
about one entity), and the ability to navigate from one entity to related entities.



2

RDF

ERP

CRM

Share-
point

Archive

Search 
engine

Fig. 1. System architecture

The interface also provides type-ahead functionality to help users understand
what they can search for.

In the user interface system users can navigate from a customer in the CRM
system to the same customer in the ERP system, and from the ERP customer
to connected equipment in the ERP system, and so on.

The user interface is deliberately kept generic, the display logic for RDF
data being a direct translation from the structure of the RDF data. Thus new
properties and classes can be added to the RDF data and be displayed without
modifying the user interface.

1.2 Collecting Information

All source systems are integrated in the same way: a wrapper is added to expose
an SDShare server interface. SDShare is a specification for synchronizing RDF
data using Atom feeds [SDShare]. Once a source system exposes a set of SDShare
feeds the integration is complete, as an SDShare client can then pull the data
into the triple store.

The SDShare client is a generic implementation of the SDShare protocol,
which periodically polls each data source for new data, and automatically trans-
ferring any new data to the triple store, keeping the triple store in sync with
sources. At the moment the client polls most sources every 5 minutes, which is
more than sufficient for an archive system. Some sources are polled more often,
and some as rarely as once an hour.

Data from each source system is kept in a separate graph in the triple store,
allowing the source of each statement to be tracked. This also provides a parti-
tioning of the data that is useful for maintenance purposes.

1.3 Archiving

Sesam exposes a web service interface for archiving based on the CMIS standard
[CMIS], to allow applications to add support for archiving directly from the



3

application. Thus users can do their archiving from the context of the end-user
application they are working in, without having to turn to a separate archiving
tool, and without requiring manual double entry by archivists. This has obvious
usability and cost benefits.

Each archiving source gathers as much metadata about the document as it
can, and represents it using its own vocabulary. The document is then posted
to the CMIS interface, where the CMIS server translates the metadata to the
vocabulary used by the archive.

In addition, the metadata is automatically enriched. For example, if the doc-
ument is tagged with the URI of an electricity meter, the CMIS server will
automatically add the URI of the customer currently owning that meter. The
metadata translation and enrichment is configured using an RDF vocabulary an-
notating the CMIS metadata vocabularies. The enrichment code is thus entirely
generic, and has no built-in knowledge of the various metadata vocabularies.
It also makes the archive clients truly independent of the model used by the
archive.

1.4 Ontology

The core of the ontology is at the moment drawn from the ERP system, and con-
tains typical ERP entities like employee, customer, project, and equipment. The
ontology is expressed in RDFS, and uses only a few very basic OWL constructs.
No reasoning is done using the ontology.

A simplified view of the ontology is shown in figure 2. The full ontology
is considerably larger, and changes as new sources and data are added to the
system.

Equipment

WorkOrder

Project

Customer Supplier

CompanyDept.

Employee

works-in

in-company

parent-equipment

part-of-project

work-on

reported-by

vendor

work-for

work-for

Fig. 2. System ontology

Note that in addition to this core ontology, there are separate ontologies for
each source system, subclassed from the core ontology where possible.



4

2 Principles and Requirements

The architecture of the system has been guided by a few simple principles and
requirements described in this section.

2.1 Principles

The interfaces between components should be standards-based, allowing individ-
ual components to be changed or replaced without affecting other components.
This also enables the use of existing open source or commercial components
which support the standards.

The system should be driven by configurations and annotations of the source
data, rather than logic defined in code. A corollary is that all mappings should
reside in data, not code. Similarly, code should be generic and handle new schema
elements correctly without having to be modified. This makes the system much
more flexible, and limits the amount of code.

Further, configuration and annotations should be stored in the triple store,
rather than in peripheral systems. This makes it easier for developers to make
changes without having to be intimately familiar with every component.

Finally, source data should be extracted as-is, and not transformed into a
canonical data model for the entire enterprise. Not transforming data dramati-
cally simplifies integrations, and avoids having to “dumb down” the data to the
lowest common denominator. Normalization to a common representation can be
implemented where necessary as a feedback loop reading source data from the
triple store and writing back normalized data.

2.2 Requirements

Archiving, while important and in some cases a legal requirement, is seen by em-
ployees essentially as a distraction from their real jobs. It follows that the process
must be as simple as possible, and not require users to enter large amounts of
metadata.

The system must handle 1000 users, although not necessarily simultaneously.

Initial calculations of data size assumed 1.4 million customers and 1 million
electric meters with 30-50 properties each. Including various other data gave a
rough estimate on the order of 100 million statements.

The archive must be able to receive up to 2 documents per second over
an interval of many hours, in order to handle about 100,000 documents a day
during peak periods. The documents would mostly be paper forms recording
electric meter readings.

To inherit metadata tags automatically requires running queries to achieve
transitive closure. Assuming on average 10 queries for each document, the system
must be able to handle 20 queries per second on 100 million statements.



5

2.3 Technology Choices

To write generic code we must use a schemaless data representation, which must
also be standards-based. The only candidates were Topic Maps [ISO13250-2] and
RDF. The available Topic Maps implementations would not be able to handle
the query throughput at the data sizes required. Testing of the Virtuoso triple
store indicated that it could handle the workload just fine. RDF thus appeared
to be the only suitable technology.

The canonical approach to RDF data integration is currently query federation
of SPARQL queries against a set of heterogeneous data sources, often using
R2RML. Given the size of the data set, the generic nature of the transitive
closure queries, and the number of data sources to be supported, we considered
achieving 20 queries per second with query federation unrealistic.

We therefore had to transfer data from the data sources into the triple store
and keep it in sync with changes. Of the open specifications for this SDShare
was considered the most suitable.

We chose to use a search engine as the front-end as we considered it better
at handling full-text searches of documents, many concurrent user searches, and
filtering of search results by access control rules.

2.4 Data Integration

The heart of the data integration is the triple store, in our case Virtuoso. All
data in the system, except actual documents and their metadata, is stored in the
triple store. In order to reduce the coupling with the triple store product, we only
interact with the triple store using SPARQL and SPARQL Update, sent using
the SPARQL Protocol. This should theoretically allow us to change triple store
without anything more than minor configuration changes in other components.

The data flows between components are implemented using the SDShare
protocol.

2.5 The SDShare Protocol

SDShare servers expose data collections, where a collection is a data set defined
by the server. It could be an RDF graph internally on the server, but doesn’t
have to be. The top level of the SDShare interface is the overview feed, which is
an Atom feed providing a link to the collection feed for each collection, as shown
in figure 3 on the following page.

The collection feed is the entry point for each collection, and provides two
links: one to the snapshot feed for the collection, and one to the fragment feed
for the collection. Subscribers to a collection generally record the URL of the
collection feed in their configurations.

The snapshot feed contains a list of links to actual snapshots. A snapshot is
a representation of the entire collection in some RDF format. Many implemen-
tations offer just a single snapshot, which is a service providing a live export of
the entire collection to RDF.



6

Overview 

feed

Collection 

feed #1

Collection 

feed #2

Collection 

feed #3

Snapshot 

feed #2

Fragment 

feed #2

Snapshot 

feed #1

Fragment 

feed #1

Snapshot 

feed #3

Fragment 

feed #3

Snapshot

Snapshot

Snapshot

Fig. 3. SDShare server structure

Snapshots serve two purposes: they allow clients to make a local copy before
starting to synchronize, and they allow clients to reset their local copy in case
there are problems with it.

The fragment feed contains a list of links to fragments. A fragment is a small
subset of a collection, typically just all statements where a particular resource is
the subject. The fragment feed contains a list of fragments which have changed.
By subscribing to it, clients can replicate those changes in their local copies.

The protocol does not inform clients of exactly which triples have changed.
Once a resource has changed, the fragment for that resource shows up in the
fragment feed, and the client downloads a complete copy of the fragment. The
fragment is applied on the client side by simply deleting all statements about
the resource in the target graph, and then inserting the new fragment.

The fragment feed often grows very large. In order to avoid having to down-
load the entire feed each time the client polls, a since parameter can be added
to the request for the fragment feed. The parameter specifies that the client only
wishes to see changes after the given time (typically the time of the last change
the client has seen).

In addition, servers may page the feed. That is, the fragment feed may be
broken into pages, each page providing a next link to the next page. Thus clients
avoid having to download very large Atom feeds in a single request in cases where
there are a large number of changes.

2.6 The SDShare Client

We have developed a generic SDShare client which can be configured with (Col-
lection feed, SPARQL endpoint) URI pairs. The client can download a snap-
shot from the SDShare collection and feed it into the SPARQL endpoint using



7

SPARQL Update. After that, it polls the fragment feed at set intervals for new
fragments. These are also applied to the SPARQL endpoint using SPARQL Up-
date statements.

Adding a new data source thus requires no more than implementing an SD-
Share server wrapper around the data source, and then adding a new endpoint
pair to the configuration. The configuration provides a URI identifying the col-
lection, and this URI is used as the URI of a graph in the triple store. Thus
different collections can provide data about the same resources without conflict,
as SPARQL Update statements can be used to update the resource in G without
modifying it in G′.

The client has support for pluggable backends, and another backend uses a
trivially simple HTTP protocol to POST fragments to recipients. This backend
is used for recipients which are not triple stores.

2.7 SDShare from the Triple Store

In order to make the RDF data in the triple store available to clients, we expose
SDShare feeds from the triple store. This is implemented using an SDShare
server framework implemented in Java, which uses SPARQL queries to produce
the feeds with select queries and the actual snapshots and fragments with
construct queries. The queries are configurable.

In order to do change data capture we initially added triggers to Virtuoso’s
RDF data table. These triggers updated a custom table containing the changelog,
which was mapped to a virtual graph using Virtuoso’s pre-R2RML mapping
mechanism, and could thus be queried with SPARQL.

As the system grew, we experienced performance issues with this approach,
and so changed the system so that all clients making updates must insert times-
tamp triples in the triple store when making changes.

2.8 The ERP System

Hafslund uses the IFS ERP system, which is based on an Oracle database. In
general, implementing the snapshot part of SDShare on top of Oracle is near-
trivial. The difficult part is being able to do change data capture, in order to
implement the fragment feed. However, IFS has a history table tracking changes
in the database, and the administrator interface can be used to configure which
parts of the database have changes tracked. The fragment feed is thus easily
implementable through queries against the history table.

This integration has been through a number of iterations, but at the moment
it is implemented using the BrightstarDB SDShare server. This is a commer-
cial product which, given a configuration from the relational schema, produces
SDShare feeds. It can do change data capture in a number of different ways,
including using SQL queries against the change log.



8

2.9 The CRM Systems

Hafslund at the moment uses two CRM systems: Siebel and Tieto CAB. Here,
too, the integration is done at the database level, using the BrightstarDB SD-
Share server. The data sets are somewhat larger than from the ERP system,
and the databases provide only partial changelogs. This has required using the
“last modified” column in cases where data is never deleted. For the remaining
cases the BrightstarDB product can compare hashes of database rows against
previously stored hashes to see which rows have changed.

The integration with Siebel was completed in just a couple of days. The CAB
integration took longer, but in this case the problem was to get the necessary
data into the CAB database (as conversion from the system CAB replaces was
still in process), and being allowed to access necessary data. That is, the problems
were organizational, not technical.

2.10 Sharepoint

The Sharepoint integration reads two SDShare feeds from the triple store, and
writes their contents into Sharepoint’s taxonomy component (TermStore). The
data mapping is a very simple mapping from one RDF property to the TermStore
hierarchy, and another to the term labels in TermStore.

The integration keeps copies of the Hafslund organization structure and a
hierarchical classification scheme up to date in the TermStore, allowing Share-
point content to be tagged with these concepts. A separate integration reads the
TermStore contents back out as an SDShare feed, so that the internal Sharepoint
identifiers for these terms are available in the triple store with sameAs-mappings
to the original resources.

2.11 To the Archive

The actual archive system used at Hafslund is Public 360, which takes care of
handling basic document metadata, content, versioning, access control, and so
on. Public 360 also provides compliance with the Norwegian NOARK archive
standard [NOARK5], which is a legal requirement for parts of the Hafslund
group.

In order for key metadata required by NOARK to be present in the archive,
documents need to be tagged with what Public 360 calls “contacts”. These ex-
ist in the triple store as employees, customers, and suppliers, and so must be
imported into the archive. This was done by configuring a special SDShare feed
from the triple store containing only resources of these classes.

For flexibility we wanted to avoid hard-wiring the mappings from the data in
the triple store to the Public 360 data model. A mapping vocabulary describing
mappings from the RDF data to arbitrary RDF was developed, and is applied
by the SPARQL queries used to set up the SDShare feeds. These mappings also
filter out data that should not be included.



9

The Public 360 integration code is thus completely generic, and has no knowl-
edge of the mapping. Instead, RDF statements are mechanically translated into
the Public 360 data model, using introspection of the URIs in the RDF to de-
termine which classes and fields in Public 360 to write data to.

2.12 From the Archive

Contacts in the archive are pulled into the triple store, and as their URIs have
been stored in the archive, owl:sameAs statements to the original resources are
included. This allows contact information on archived documents to be trans-
lated from the ERP/CRM identifiers for contacts to the archive identifiers for
the same contacts.

The SDShare wrapper is implemented against the Public 360 web service
API, which provides a log of changes.

3 System Components

3.1 The Search Engine

The search engine used is Recommind. The vendor has added an SDShare con-
nector, allowing Recommind to crawl the SDShare feeds provided by the triple
store and the archive to index the entire data set. Which RDF properties to
index and display are configured using the Recommind administration GUI.

The user interface application is actually the default search interface of
Recommind, heavily customized using JavaScript and CSS. This approach, rather
than building a custom application, was chosen in order to save time and cost.

3.2 Archiving

The search engine interface has now been integrated in a number of applications,
allowing users to see data from the search engine directly in the application.
The integration is done by embedding a generic browser component in the client
application.

The integrations also make use of the application context, so that when
browsing a particular object in the client application, the web interface displays
the entity page for that particular object in Sesam. Thus, when working with a
particular customer in a CRM system, the user can switch from the CRM view
to the Sesam view to see all relevant information about the customer, including
links to duplicates of the customer and information about the same customer in
other applications.

At the moment such integrations are provided in IFS, Public 360, Sharepoint,
CAB, Siebel, and GeoNIS.

In addition, integrations have been developed that make it possible to send
documents directly to the archive from IFS, CAB, and Sharepoint. These work
by exploiting functionality for storing documents that’s already present in these



10

applications, and picks up the documents for forwarding to the archive. The
documents are passed on with their metadata in the source application (including
references to related objects in the source application) to the CMIS server.

3.3 The CMIS Server

The CMIS server was implemented using Apache Chemistry OpenCMIS, where
we plugged in an implementation of the createDocument method. This imple-
mentation receives documents, translates metadata to the Public 360 metadata
vocabulary, and automatically enriches metadata that’s already present.

A mapping vocabulary for CMIS metadata was developed, allowing us to
configure things like:

– Mappings from one CMIS property to another.
– Static properties to be inherited from existing values (for example, docu-

ments in archive X must have property Y set to Z).
– RDF properties to traverse along to collect additional tags.

In addition, URIs in the metadata identifying resources in the triple store
are translated into the URIs for the corresponding resources in the target graph.
Incoming metadata may well contain a reference to a customer using its URI
from the ERP system, which may need to be translated to the URI of the
contact in the archive. This is easily done using SPARQL queries that traverse
owl:sameAs statements to resources defined in the archive graph (which is the
target graph in this context).

In order to inherit metadata by traversing all annotated RDF properties from
given tags, repeated SPARQL queries are run to produce transitive closure. Thus,
a large number of queries must be run for each archived document.

An example may serve to make this clearer. A subset of the source CMIS
metadata might look as shown below. Please note that this is CMIS metadata,
represented in the CMIS protocol, and not RDF (CMIS allows URIs as the
names of properties).

http://.../hummingbird/document-number=3483122

http://.../hummingbird/title=Complaint letter of 2012-07-10

http://.../hummingbird/creation-date=2012-07-13

http://.../hummingbird/references=http://.../ifs/work-order/201013

After processing through the CMIS server, it might look as follows:

http://.../360/external-id=3483122

http://.../360/archive=3

http://.../360/title=Complaint letter of 2012-07-10

http://.../360/document-date=2012-07-13

http://.../360/tags=http://.../ifs/work-order/201013

http://.../360/tags=http://.../360/project/4882

http://.../360/tags=http://.../360/contact/35823



11

Here we have translated the metadata to the fields used by Public 360, added
a static value, and traversed outwards from work order 201013 to find related
objects. These related objects have URIs in the IFS graph, but have been trans-
lated to the corresponding URIs in the 360 graph, via owl:sameAs statements.

3.4 Access Control

There are strict access control rules on many of the documents in the archive,
as some contain personal information about individuals and others contain con-
fidential commercial information.

Each individual application has its own acccess control implementation, in-
cluding the archive system. Access control information is extracted from each
system together with the other enterprise data, so that the triple store contains
the access control group memberships and settings.

When a user logs in to the search engine their access group memberships
are loaded from the triple store. Once the groups have been loaded, Recommind
automatically performs real-time filtering of search results based on the user’s
group memberships.

3.5 Deduplication

Data quality analysis of the ERP system quickly showed that it contains many
records representing the same real-world entities (duplicates). This is caused
by a number of factors, one being the design of the relational schema, which
has one table each for Hafslund group companies, employees, customers, and
suppliers. Unfortunately, these four categories overlap considerably, which forces
data duplication.

There is also much duplication internally within the customer and supplier
tables. This seems to be partly caused by limitations on how payment informa-
tion is attached to these entities, and partly by careless data entry by users.

The consequences for information retrieval are serious, however. Imagine
wanting to find a document about customer when the customer is registered
10 times. To find the document the user is forced to repeat the search for each
customer copy. It’s clear that this is going to be a problem in practice.

To solve this problem we turned to record linkage techniques [Winkler06].
A quick review of existing software found many tools, but none that seemed to
meet our requirements for such a tool, which would have to support:

– Receiving data via SDShare.
– Storing the links found in a database.
– Continuously receiving new data and updating the link database.

In the end we implemented our own record linkage engine, known as Duke
[Duke], which solved the problem. Both precision and recall of the deduplication
done by this engine appears to be satisfactory for user purposes.



12

Duke maintains a single table of links in an Oracle database, with time stamps
in the table, allowing us to easily expose the links in an SDShare feed. Links are
expressed as owl:sameAs and haf:possiblySameAs statements. The SDShare
client thus pulls the discovered links back into the triple store, where they are
stored in a separate Duke graph, and displayed by the search engine application.

4 Evaluation

The project has been through a pilot phase, and the implementation phase
started in late 2010. The system went into production in the autumn of 2011.

4.1 Performance and Scalability

Triple Store. To give an impression of the scale of the system, table 1 contains
an overview of the size of the main graphs in the development environment.
Ontology and mapping graphs as well as some graphs with reference data are
omitted. The total number of statements in the system is around 630 million,
and growing daily. (Hummingbird is the old archive, now replaced by Sesam.)

Table 1. Graph sizes

Graph Statements

IFS data 5,417,260
Public 360 data 3,725,963
GeoNIS data 44,242
Tieto CAB data 138,521,810
Hummingbird data 1 32,619,140
Hummingbird data 2 165,671,179
Hummingbird data 3 192,930,188
Hummingbird data 4 48,623,178
Address data 2,415,315
Siebel data 36,117,786
Duke links 4,858

Virtuoso has held up to these data sizes very well, running in a 2-node clus-
ter in order to provide failover. It’s possible to write queries that run slowly,
obviously, but generally performance is good. Virtuoso used to freeze for a few
minutes when doing checkpoints, but a configuration change fixed this. As end-
users only interact with the search engine the consequences were in any case
limited.

Search Engine. Initially, the Recommind search engine was too slow. Searches
generally took on the order of 5-10 seconds. The cause was that each RDF
property in the triple store was a separate facet, and Recommind scaled poorly
with the number of facets. By collapsing these properties into a smaller number
of semantically equivalent facets, search times were reduced to less than a second.



13

However, Recommind cannot index and search at the same time, so searches
used to hang for 30 seconds after each indexing. This is a serious problem when
indexing runs once every five minutes. Tuning has reduced this issue.

SDShare Synchronization. Synchronization via SDShare has performed very
well. Generally, importing a snapshot is faster than transferring the same amount
of data via fragments. The performance also varies with the source and sink
involved. For our purposes, performance has been adequate. The average time
to process a fragment varies from 50 to 450 milliseconds, depending on the
source/sink combination.

The SDShare client has been optimized somewhat from the original, naive
implementation, to a multi-threaded design where different transfer jobs can run
in parallel. In addition, the frontends and backends now use persistent HTTP
connections, in order to avoid having to open and close three TCP connections
per fragment, as was previously the case.

4.2 Architectural Properties

The system has a number of relatively unusual architectural properties, which
in our opinion has contributed greatly to the success of the project:

– Generally, the data integrations are nearly stateless, since the integrations
only expose Atom feeds. This greatly simplifies the integrations, and also
means they can be deployed on any number of nodes. The SDShare client
has a minimal amount of state per integration: the timestamp of the last
change.

– The application of SDShare fragments is idempotent, so fragments can be
processed more than once with no adverse effects.

– If necessary, we can delete the entire contents of the triple store, and reload
everything from the source.

– Uniformity. All data integrations follow the exact same approach.
– Simplicity. Most components in the system (except the CMIS server) are

simple, and easy to understand.

4.3 Architectural Flexibility

The architectural flexibility of the system has been proved several times over, in
our view.

Changing Components. Perhaps the best example is the extraction of data
from the ERP system. Originally, this was implemented using the Ontopia Topic
Maps engine, which used a DB2TM component to map the relational data to
Topic Maps, and then used the built-in SDShare server to expose SDShare feeds.
This worked fairly well, but was a bit slow, and required a big, separate compo-
nent to be set up and maintained.



14

Eventually, Ontopia was replaced in favour of Virtuoso’s built-in virtual
graph mechanism, using the pre-R2RML functionality. The Oracle tables of the
ERP system were linked in and mapped, and then queried with SPARQL to
produce SDShare feeds using the existing SPARQL-to-SDShare server. This had
excellent performance and worked very well, until we needed to UTF-8 encode
URIs to handle primary keys in the ERP system containing non-ASCII char-
acters. After that change performance degraded, and we were not able to fix
it.

Finally, we switched to the BrightstarDB SDShare server, which is the com-
ponent currently used.

In each of these cases, the change had no effect on any other component,
except that the SDShare endpoint URI in the SDShare client changed.

Handling Duplicates. When the problem with duplicate resources was dis-
covered we quickly came up with the solution of one SDShare feed into the
deduplicator, and another SDShare feed going back. To create the first SDShare
feed required no more than a few SPARQL queries in the configuration. The
second was likewise trivial to set up.

The entire problem was solved simply by adding a new component, and wrap-
ping it with already existing components. It’s difficult to imagine any comparably
simple solution with traditional technologies.

4.4 Ease of Development

When the project started, only a few of the developers were familiar with RDF,
SPARQL, and SDShare. Generally, this has not been a problem, but for some
developers writing generic code that does not have hard-wired data binding has
been a bit of a challenge.

4.5 Stability

The stability of the tools throughout has generally been excellent, with the
exception of the Public 360 archive system.

Synchronization via SDShare has worked well and been mostly stable. If an
SDShare sync process stops for some reason, the only real consequence is that
data does not get updated. Once the problem is resolved by admins the data
flow starts again, catching up with changes that had not been applied.

It is worth contrasting this with the query federation approach, where the
failure of either a data source or the mapping to it risks making the entire system
fail or causes part of the data to disappear until the problem is resolved.

4.6 Usability

An interview with a project participant representing the users indicated that
users were satisfied with the ability to find content, describing it as “good”. The



15

benefits from being able to navigate across system boundaries were then not yet
realized, as only the ERP integration was in production at the time.

The users complained about “instability”, meaning the indexing problem
described in 4.1), and the user interface having some issues with handling of
context based on cookies.

The user interface also lacks some functionality users want, such as the ability
to attach documents to emails directly from search results.

4.7 Other Aspects

The project won the “Archive of the Year 2012” prize from the Norwegian
Archive Council. The rationale was “innovative and strategic use of technology”
to “improve data gathering and simplify the use of metadata”.

The customer has stated that while the project was expensive, the project
has paid for itself through cost savings at the document center [Pretorius2012].

5 Conclusion

Overall, we not only consider this project a success, but have reused the general
architecture in other projects with excellent results. Three projects for other
customers have already used the same technology, and we expect many more to
follow.

Our experience is that using RDF greatly simplifies information integration
compared to traditional technologies. We also consider SDShare a key enabler,
as it greatly contributes to the simplicity and flexibility of the architecture.

References

[CMIS] Content Management Interoperability Services
(CMIS) Version 1.0; OASIS Standard; 2010-05-01.
http://docs.oasis-open.org/cmis/CMIS/v1.0/os/cmis-spec-v1.0.pdf

[Duke] Duke; open source software, available at http://code.google.com/p/duke/

[Winkler06] Overview of Record Linkage and Current Research Directions; William
E. Winkler; Research report series (Statistics #2006-2); 2006-02-08; U.S. Census
Bureau. http://www.census.gov/srd/papers/pdf/rrs2006-02.pdf

[ISO13250-2] ISO 13250-3: Topic Maps – Data Model; International Organization for
Standardization; Geneva. http://www.isotopicmaps.org/sam/sam-model/

[NOARK5] Noark 5 – Standard for elektronisk arkiv; Arkivverket; versjon 3.0; 2011-03-
01. http://www.arkivverket.no/arkivverket/Offentlig-forvaltning/Noark/Noark-5/

[Pretorius2012] Enkel arkivering, sikker gjenfinning, og deling av virksomhetskritisk
informasjon i Hafslund; Jon Andreas Pretorius; oral presentation, 2012-11-21. Video:
https://new.livestream.com/accounts/233730/events/1689454

[SDShare] SDShare - A Protocol for the Syndication of Resource Descrip-
tions; Graham Moore and Lars Marius Garshol; version 1.0 draft; 2012-07-10.
http://www.sdshare.org/spec/sdshare-current.html


